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Abstract

The magnitude operation changes the signal distribution in MRI images from Gaussian to Rician. This introduces a bias that must be
taken into account when estimating the apparent diffusion coefficient. Several estimators are known in the literature. In the present
paper, two novel schemes are proposed. Both are based on simple least squares fitting of the measured signal, either to the median

(MD) or to the maximum probability (MP) value of the Probability Density Function (PDF). Fitting to the mean (MN) or a high sig-
nal-to-noise ratio approximation to the mean (HS) is also possible. Special attention is paid to the case of averaged magnitude images.
The PDF, which cannot be expressed in closed form, is analyzed numerically. A scheme for performing maximum likelihood (ML) esti-
mation from averaged magnitude images is proposed. The performance of several estimators is evaluated by Monte Carlo (MC) simu-
lations. We focus on typical clinical situations, where the number of acquisitions is limited. For non-averaged data the optimal choice is
found to be MP or HS, whereas uncorrected schemes and the power image (PI) method should be avoided. For averaged data MD and
ML perform equally well, whereas uncorrected schemes and HS are inadequate. MD provides easier implementation and higher com-
putational efficiency than ML. Unbiased estimation of the diffusion coefficient allows high resolution diffusion tensor imaging (DTI) and
may therefore help solving the problem of crossing fibers encountered in white matter tractography.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In vivo diffusion measurements are often performed
using a single shot echo-planar imaging (EPI) technique.
The diffusion gradients needed in the pulse sequence pro-
long the echo time. Hence the mean signal intensity is
reduced by transverse relaxation. Furthermore, signal is
lost due to the diffusion weighting. As a result the inherent
signal-to-noise ratio (SNR) in diffusion measurements is
relatively low. Using low diffusion weighting factors
improves the SNR, but we may also want to sensitize slow
diffusion components. The value of the apparent diffusion
coefficient (ADC) normal to the fiber direction in white
matter can be as low as 0.2 · 10�3 mm2/s. In cerebrospinal
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fluid the ADC can be as high as 3 · 10�3 mm2/s. If we
apply a wide range of diffusion weighting factors, the diffu-
sion measurement is inevitably going to be noise biased.
This is true in particular for the fast diffusion components.

Many applications require high-resolution imaging, i.e.
large matrix acquisition and thin slices. This applies to tra-
ditional methods like ADC mapping as well as modern
techniques such as diffusion tensor imaging (DTI). How-
ever, high resolution further decreases the SNR.

In order to avoid the problem of motion-induced phase
shifts one usually discards the phase information and cal-
culates the diffusion coefficient from magnitude data. The
magnitude operation changes the signal distribution from
Gaussian to Rician [1] and signal intensities at low SNR
are biased by the noise to a value that (on average) is higher
than the true value of the magnitude. If we do not properly
account for this effect, the estimates of the diffusion coeffi-
cient will be biased. In the magnetic resonance literature,

mailto:Anders.Kristoffersen@stolav.no


294 A. Kristoffersen / Journal of Magnetic Resonance 187 (2007) 293–305
Henkelman [2] was the first to discuss this problem for a
single receiver system. This topic has later been addressed
by several authors in a variety of contexts [3–13].

It is the purpose of the present paper to compare the
performance of a number of possible diffusion estimators.
The means by which we compare the estimators is Monte
Carlo (MC) simulations. The simulations are performed
with physical parameters and acquisition parameters that
are typical for human brain imaging.

In addition to estimators proposed in the literature, we
introduce two novel schemes which are based on least
squares fitting of the measured signal; either to the median

(MD) value of the Rician distribution or to the maximum

probability (MP) value. Fitting to the mean (MN) value is
also possible [11]. For convenience we have summarized
the abbreviations used for various estimators in Table 1.

In the presence of poor SNR, it is a common strategy to
average the data. This introduces some problems since the
Probability Density Function (PDF) of the averaged data
cannot be expressed in closed form. Dietrich et al. [12] pro-
posed to use an empirical correction scheme that requires
the acquisition of phantom data. Our approach is to eval-
uate the PDF of averaged magnitude data by efficient
numerical methods. Apart from allowing the construction
of efficient least squares estimators, this can also be used
for ‘‘brute-force’’ maximum likelihood (ML) estimation.

The MD and MP methods are related to the mean (MN)
method but their performance is better. Uncorrected
schemes and traditional methods [3–5] are somewhat easier
to implement but their performance is significantly lower.
Maximum likelihood, although often considered to be the
gold-standard, does not perform better than MP and
MD, and the computational cost is higher.

Unbiased estimation of the diffusion coefficient allows
high-resolution DTI and may therefore help solving the
problem of crossing fibers encountered in white matter
tractography. We find efficient methods for non-averaged
data (MP and HS), as well as for averaged data (MD
and ML). The numerical efficiency of the MP, MD and
HS methods is adequate for quick image processing, which
is required in clinical situations. Our results apply equally
well to any situation where the task is to extract data from
a noisy magnitude dataset where the true magnitude is
known to be mono-exponential. Other examples are mea-
Table 1
Abbreviations used for the estimators that are discussed in this manuscript

Abbreviation Used for

LR Linear regression
UC Uncorrected
MN Mean
MD Median
MP Maximum probability
PI Power image
ML Maximum likelihood
HS High SNR approximation
surements of the transverse relaxation rate, R2 and effective
transverse relaxation rate, R�2.
2. Theory

2.1. Probability density function for the image data

After quadrature detection, the raw data are complex
valued. Applying the inverse Fourier transform, we obtain
the voxel signal, which is also a complex quantity, i.e.
s = x + iy = mexp(iu), where m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the magni-

tude and u = arctan(y/x) is the phase. Since imaged objects
are real, the phase should be constant throughout the
image, however flow and motion will introduce phase
variations.

When the raw data is corrupted by Gaussian noise, the
same holds true for the image data. If we assume the noise
in the real and imaginary channels to be independently and
identically distributed, then the real and imaginary parts of
the voxel signal, which can be represented by the random
(stochastic) variables x, y, follow a Gaussian (normal) dis-
tribution N, i.e. x � N(x0,r2) and y � N(y0,r2), where
(x0,y0) are the true mean values and r is the standard devi-
ation (SD), i.e. the noise level. Underbars are used to
denote random variables throughout the paper. Under
these assumptions the joint PDF of the real and imaginary
voxel signal is given as:

px;yðx; y; x0; y0; rÞ ¼
1

2pr2
exp �ðx� x0Þ2

2r2
� ðy� y0Þ

2

2r2

 !

ð1Þ

We represent the magnitude of the voxel signal by the ran-
dom variable m and let m denote a specific realization of m.
It is straightforward to show [14] that m is Rician distrib-
uted [1] with PDF

pmðm; m0; rÞ ¼
m
r2

exp �m2 þ m2
0

2r2

� �
I0

mm0

r2

� �
HðmÞ ð2Þ

where I0 is the zeroth order modified Bessel function of the
first kind, H is the Heaviside step function and
m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ y2
0

p
is the true value of the magnitude. Eq. (2)

is valid when signal is measured through a single receiver
unit. The case of phased arrays has been discussed by Con-
stantinides et al. [8]. When the true magnitude, m0, is much
greater than the noise level, r, the Rician distribution
approximates well a Gaussian distribution. When the true
magnitude equals zero, the Rician distribution simplifies
to a Rayleigh distribution.

The Rician distribution is shown in Fig. 1. In this figure
and in what follows the term normalized is used for quan-
tities that are measured in units of the noise level r (i.e. m/r
is referred to as the normalized magnitude etc.). In the dis-
cussion of possible diffusion estimators, we will need a mea-
sure of the center of the distribution. The most obvious
choice is the mean (the first moment), mMN, which can



Fig. 1. The Probability Density Function (PDF) for the normalized
magnitude m/r (the Rician distribution). The values of the normalized
true magnitude are m0/r = 0 and m0/r = 2. Left to right, vertical bars
show the points of maximum probability, mMP/r, median, mMD/r, and
mean, mMN/r, of the distributions.

Fig. 2. Normalized measures of the center of the Rician distribution as a
function of the normalized true magnitude m0/r: maximum probability,
mMP/r, median, mMD/r and mean, mMN/r.
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be expressed analytically [14] as a function of the true mag-
nitude, m0, as

mMNðm0Þ ¼ E½m� ¼ r

ffiffiffi
p
2

r
1F 1 �

1

2
; 1;� m2

0

2r2

� �
ð3Þ

where 1F1 is the confluent hypergeometric function [15] and
E[� � �] denotes the expectation operator.

Since the distribution is non-symmetric, the mean is not
the only possible measure of the center. Another measure is
the median value, mMD(m0), which is defined byZ mMDðm0Þ

0

dm pmðm; m0; rÞ ¼ 1=2 ð4Þ

The median value cannot be expressed in closed form and
must be calculated numerically. Yet another measure of the
center is the maximum probability point, mMP(m0). Since
there is only one unique maximum, mMP(m0) can be found
by solving the equation

opmðm; m0; rÞ
om

����
m¼mMPðm0Þ

¼ 0 ð5Þ

The three possible measures of the distribution center are
indicated by vertical bars in Fig. 1 and plotted as a function
of the normalized true magnitude, m0/r, in Fig. 2.

The variance of the Rician distribution can be expressed
in closed form. Since m2 = x2 + y2, we can write

E½m2� ¼ E½x2� þ E½y2� ¼ m2
0 þ 2r2 ð6Þ

where we have used the fact that the second moments of
the normal distributions N(x0,r2) and N(y0,r2) are given
by E½x2� ¼ x2

0 þ r2 and E½y2� ¼ y2
0 þ r2, respectively. The

variance of m is therefore given by

rmðm0Þ2 ¼ E½m2� � E½m�2 ¼ m2
0 þ 2r2 � mMNðm0Þ2 ð7Þ
The Rician distribution gets narrower as the true magni-
tude decreases.
2.2. Effect of averaging

In order to improve the SNR we can perform repeated
measurements and average the data. Averaging can be
done either prior to or after the magnitude operation.

Averaging prior to the magnitude operation can be done
directly on the k-space (raw) data prior to the inverse Fou-
rier transformation or one can average the complex image
data. Owing to the linearity of the inverse Fourier trans-
form, the result is the same. In either case the effect on
the PDF of the image data is trivial as long as the true
phase, u0, is equal in all measurements. The averaging of
the real and imaginary parts yields mean values that remain
unchanged, whereas the variance will be inversely propor-
tional to the number of averages, NAV. The distributions
of the averaged real and imaginary parts, represented by
xave, yave, remain Gaussian, xave � N(x0,r2/NAV) and
yave � N(y0,r2/NAV) respectively. Hence the distribution
of the magnitude data remains Rician and it is found by
substituting r2 fi r2/NAV in Eq. (2).

Averaging complex data is not possible in diffusion
measurements due to the aforementioned problem of
motion-induced phase shifts (unless reliable phase-correc-
tion algorithms can be applied). Instead, we have to
average the magnitude data.

This motivates the analysis of the statistical properties
of averaged Rician data. We let the data be represented
by the random variable mave defined by

mave ¼
1

NAV

mR; where mR ¼
XNAV

k¼1

mk ð8Þ

In this equation, k is a counter from 1 to the number of
averages, NAV, and mk is a random variable that represents
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Fig. 3. The Probability Density Function (PDF) for the normalized
averaged magnitude, mave/r (solid lines) and the Gaussian approximation
(dashed lines). The number of averages is indicated in the figure
(NAV = 1,2,3,4). The normalized true magnitude is (a): m0/r = 0 and (b):
m0/r = 2.

Fig. 4. Normalized measures of the distribution center for averaged
magnitude data (NAV = 4) as a function of the normalized true magnitude,
m0/r: Maximum probability, mMP/r, median, mMD/r and mean, mMN/r.

296 A. Kristoffersen / Journal of Magnetic Resonance 187 (2007) 293–305
the magnitude of the voxel signal in the kth excitation.
Some conclusions can be drawn immediately. The expecta-
tion value of mave equals the expectation value of mk (given
in Eq. (3)), and since the variables {mk} are assumed to be
independent and identically distributed, Eq. (8) implies that
var(mave) = var(mk)/NAV. Furthermore, since the mean and
variance of the PDF pmk

(Eq. (2)) are finite, the central limit

theorem [14] assures that the PDF of mave approaches a
Gaussian as NAV fi1.

In order to address the general problem (where NAV is
too small to allow use of the aforementioned Gaussian
approximation to describe the composite PDF) we can
use the fact that the PDF of a sum of independent and
identically distributed random variables is given by the
convolution of the PDFs of each variable, i.e.

pmR
¼ pm1

� pm2
� � � � � pmNAV

ð9Þ

Performing the necessary scaling, we can express the PDF
of the average value as

pmave
ðmÞ ¼ NAV pmR

ðNAV mÞ ð10Þ

Since all mk have the same Rician PDF (given in Eq. (2)),
the PDF of the sum mR is given by the NAV-fold convolu-
tion of Eq. (2). Attempts have been made to express this
convolution in closed form, but the presence of the modi-
fied Bessel function and the Heaviside step-function com-
plicates this task. Even the simpler special case where the
true magnitude equals to zero (which turns the PDF of
mk into the Rayleigh distribution) has been addressed in
terms of approximate schemes such as saddle-point inte-
gration [16], or infinite summation [17]. For the full Rician
distribution efficient numerical schemes have been pro-
posed [18].

Using the fact that Fourier transformation turns the
convolution operation into multiplication, we can rewrite
Eq. (9) as

pmR
¼ F �1 ðF fpmgÞ

NAV

n o
ð11Þ

where F and F�1 denote Fourier transform and inverse
Fourier transform, respectively. The Fourier transform
F {pm} of the distribution, which is equal to the expecta-
tion value of exp(m), is termed the characteristic function.
After discretization of the function pm, Eq. (11) is readily
evaluated by the fast Fourier transformation, and the
PDF of the mean value mave is found by rescaling (Eq.
(10)). Examples with number of averages NAV = 1, 2, 3,
4 and normalized true magnitude m0/r = 0,2 are shown
in Fig. 3. The case m0/r = 0 gives the largest possible
asymmetry, but the Gaussian approximation is reasonably
accurate after averaging only four times. In Fig. 4, we
show normalized mean, median and maximum probability
as functions of normalized true magnitude for the PDF of
the averaged magnitude with NAV = 4. Due to increased
symmetry the median and maximum probability points
are nearly confluent with the mean, even for small values
of m0/r.
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2.3. Estimators of the diffusion coefficient

We want to estimate the diffusion coefficient, D, from an
experiment in which the signal magnitude m(b) is measured
at several (at least two) values of the diffusion-weighting
factor b. We assume a simple mono-exponential diffusion
model, for which the true magnitude is given by:

m0ðbÞ ¼ q expð�DbÞ ð12Þ

In this equation, and in what follows, q is used to denote
the true magnitude in the absence of diffusion weighting
(whereas m0 is used for the true magnitude in a general
magnitude MRI image).

In the following sections we evaluate the performance of
several estimators. For this purpose we employ some con-
cepts from the theory of statistical parameter estimation.
Based on an observation vector y (in our case
y ¼ ½m1;m2; :::;mNb �, where Nb denotes the number of diffu-
sion weighting factors) we want to find the underlying
physical model parameters h (in our case h = [D,q]). The
observation vector can be viewed as a specific realization
of a random variable y.

In order to find the model parameters we construct an
estimator, ĥ, which is a function of y, and hence it is itself
a random variable. (‘‘Hat’’ is used to denote estimators
throughout the rest of the paper.) A given realization of
the estimator is called an estimate. The performance of
an estimator can be judged in terms of its accuracy and pre-

cision. High accuracy means that the bias is low. The bias is
defined as the difference between the expectation value of
the estimator and the true value of the model parameter.
The precision is measured by the standard deviation (or
equivalently the variance) of the estimator. In the following
section we shall discuss some of the possible estimators of
the diffusion coefficient.
2.3.1. Linear regression

The diffusion coefficient can be estimated by a linear fit
to the logarithm of the uncorrected signal intensities. The
advantage of the linear regression (LR) method is the fact
that no numerical optimization is necessary. This gives out-
standing computational efficiency. However, bias correc-
tion cannot be implemented with this method.
2.3.2. Non-linear curve fitting

We can fit a function, f, that depends on the parameters
to be estimated to the observed data. This is done by min-
imizing the p-norm of the difference between the function
and the data,

LpðhÞ ¼
XNb

k¼1

jmk � f ðbk; hÞjp ð13Þ

Strictly speaking, the p-norm is given by this sum raised to
the power 1/p, but this does not alter the location of the
minima of Lp with respect to h. The case p = 2 is equivalent
to least squares minimization. Alternatively we can mini-
mize the noise-weighted sum, Lw

p , defined by:

Lw
p ðhÞ ¼

XNb

k¼1

jðmk � f ðbk; hÞÞ=rkjp ð14Þ

For Gaussian data, Lw
2 is v2 distributed. For this special

case it can be shown that minimization of Lw
2 is equivalent

to maximum likelihood estimation of the parameters h. In
general, however, least squares minimization is not neces-
sarily the optimal choice. In fact, if a dataset contains out-
liers, it may be better to minimize the sum of absolute
values (p = 1) [19]. Weighting requires a priori knowledge
of the variance r2

k . For Rician data, we do not have this
information. The variance depends on the true magnitude
m0, which is unknown since it depends on the parameters
that we want to estimate, see Eq. (7).

The simplest possible choice of the function f(bk,D,q) is

f ðbk;D; qÞ ¼ m0;k ¼ q expð�DbkÞ ð15Þ

This means that we minimize the difference between the
measured magnitude and the true magnitude, without
any correction for the noise bias. We denote this uncor-
rected estimator by UC.

Rather than minimizing the difference between the mea-
sured magnitude and the true magnitude, we can minimize
the difference between the measured magnitude signal and
the center of the Rician distribution. In this way we take
the noise bias into account. As discussed, there are at least
three ways to define the center of the distribution. Hence
we have the following possible choices for the fitting func-
tion f(bk,D,q):

f ðbk;D; qÞ ¼ mMNðm0;kÞ ð16Þ
f ðbk;D; qÞ ¼ mMDðm0;kÞ ð17Þ
f ðbk;D; qÞ ¼ mMPðm0;kÞ ð18Þ

where m0,k is given in Eq. (15) and mMN(m0), mMD(m0) and
mMP(m0) are defined in Eqs. (3)–(5), respectively. The cor-
responding estimators are denoted by MN, MD and MP
respectively. Mean, median and maximum probability esti-
mation has earlier been used for single-point bias elimina-
tion in the context of radio astronomy [20].

In Fig. 5, we show an example of non-linear curve fitting
to a Rician dataset where we employ the fitting functions
given in Eqs. (16)–(18). Note that we fit directly to the mea-
sured dataset. Alternatively, we could have corrected the
bias at each individual data point prior to the curve fitting.
For the MN method this would amount to solving the
equation m ¼ mMNðm0Þ for m0, where m is the measured
magnitude. However, this would introduce ambiguities if
m < mMNð0Þ.

The generalization of MN, MD and MP estimation to
the case of averaged data is straightforward. We now fit
to the mean, median or maximum probability of the
PDF for mave, Eq. (10). When the number of averages,
NAV, gets large, the median and maximum probability
points are nearly confluent with the mean even for small



Fig. 5. Non-linear curve fitting to a Rician dataset (‘‘Signal’’) using the
MN, MD and MP methods (Eqs. (16)–(18), respectively). The true
diffusion coefficient is D = 1 · 10�3 mm2/s, the diffusion weighting factors
are b = [0,100,200, . . . , 1000] s/mm2 and the SNR is q/r = 3. The diffusion
coefficient estimates obtained with this particular dataset are: MN,
1.27 · 10�3 mm2/s; MD, 1.16 · 10�3 mm2/s and MP, 0.97 · 10�3 mm2/s.
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values of the true magnitude, m0. Hence the specific choice
between the MN, MD or MP estimators is of minor impor-
tance in this case.
2.3.3. Power images

Miller and Joseph [3] and McGibney and Smith [4] inde-
pendently proposed a bias correction scheme based on
power images (PI). Due to the simple expression for the
expectation value of the squared magnitude (Eq. (6)), we
can introduce a variable l = m2 � 2r2 that has the expecta-
tion value E½l� ¼ m2

0, i.e. the true value of the squared mag-
nitude. The true squared magnitude equals q2 exp(�2Db),
and the least squares PI estimate is the set of parameters
(D,q) that minimizes the objective function.

L2ðD;qÞ ¼
XNb

k¼1

jlk � q2 expð�2DbkÞj2 ð19Þ

At high SNR, the power image method could be imple-
mented as a linear fit to the logarithm of the corrected data-
set [3]. However, this is not possible at low SNR, where
corrected datasets occasionally contain negative numbers.
The logarithm of the dataset would then contain imaginary
numbers and the estimated diffusion coefficient would be
complex valued.

The power image procedure cannot be applied directly
to an averaged magnitude dataset. However, if we keep
the NAV individual datasets, we can calculate the averaged
squared magnitude. For this dataset, we can correct the
bias by subtracting 2r2.
2.3.4. High SNR approximation to the mean of the Rician

distribution
At high SNR, the mean of the Rician distribution can be

approximated by mMNðm0; rÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ r2
p

. This simple
expression can be substituted for mMN in Eq. (16) in order
to estimate the diffusion coefficient. This approach hence-
forth is referred to as the High SNR (HS) approximation.
It has been discussed in the context of diffusion coefficient
estimation by Dietrich et al. [12] and by Jones and Basser
[21].

Gudbjartsson and Patz [5] suggested a scheme inspired
by the HS approximation. The bias corrected magnitude
m0 is estimated as

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � r2j j

p
ð20Þ

where m is the measured magnitude. In order to apply this
method to averaged data, we need to store the NAV individ-
ual datasets.

2.3.5. Maximum likelihood estimation

With a given set of model parameters, h, we can calcu-
late the probability, Py(y;h), of a certain outcome, y, of
an experiment. In the context of parameter estimation,
the problem is reversed, i.e. we want to estimate the model
parameters from a given set of observations. We then use
the term likelihood, L(h;y), rather than probability. The
likelihood hypothesis states that these quantities are pro-
portional, i.e.

Lðh; yÞ / P yðy; hÞ ð21Þ

and parameter estimation amounts to maximizing the like-
lihood function (or equivalently the logarithm of the likeli-
hood function) with respect to the model parameters. The
maximum likelihood (ML) estimator is of special interest
due to favorable asymptotic properties. It is asymptotically
unbiased, i.e. unbiased as the sample size (the length of the
vector y) approaches infinity, and it can be shown to have
variance equal to the Cramér-Rao lower bound in this limit
[22].

The maximum likelihood estimator has been discussed
by Bonny et al. [6] and by Sijbers et al. [10] in the context
of T2 estimation, by Karlsen et al. [11] in the context of T1

and perfusion measurements, and recently by Sijbers and
den Dekker [13] in the context of signal intensity and noise
variance estimation.

Combining Eqs. (2), (12), (21), we can express the loga-
rithm of the likelihood function as

lnðLÞ¼C�
XNb

k¼1

q2 expð�2DbkÞ
2r2

� ln I0

mkqexpð�DbkÞ
r2

� �� 	
 �

ð22Þ
where mk is the measured magnitude at the diffusion
weighting bk, and C is a constant that includes all terms
independent of D and q. The maximum likelihood param-
eter estimates (given the observations {mk}) are the values
of D and q that maximize Eq. (22).

With averaged data the PDF cannot be expressed in
closed form and we must adopt a ‘‘brute-force’’ numerical
strategy in order to perform ML estimation of the diffusion
coefficient. This is explained in Appendix A.
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We can however adopt a simplified two-step approach
by which we use ML principles to correct the bias of the
signal intensities prior to least-squares parameter estima-
tion. Sijbers and den Dekker [13] recently discussed the
problem of ML estimation of true magnitude in homoge-
neous image regions consisting of several pixels (meaning
that the results are applicable for averaged data as well).
They found that estimation based on complex data yielded
better results than estimation based on magnitude data if
the true phases in the pixels were equal. As argued above,
this is usually not the case for diffusion images due to
motion-induced phase shifts. Hence we have to use the
NAV measured magnitudes to estimate the true magnitude
m0. This is achieved by maximizing the following expres-
sion with respect to m0:

lnðLÞ ¼ C�
XNAV

j¼1

m2
0

2r2
� ln I0

mjm0

r2

� �h i
 �
ð23Þ

where j is a counter from 1 to the number of averages, NAV.
Having done this at all Nb values of the diffusion-weighting
factor, we end up with a bias corrected dataset.

In the limit NAV fi1 the PDF of averaged Rician data
approaches a Gaussian PDF. Hence, the variance-weighted
MN estimator, (Eqs. (14) and (16)), is equivalent to the ML
estimator.
3. Methods

In order to evaluate the performance of the estimators
we perform Monte Carlo (MC) simulations using datasets
with one and four averages. The Theory section describes
how the estimates are calculated. Except for the LR estima-
tor, it is necessary to perform non-linear optimization. For
the MD and MP estimators we calculate mMD and mMP as
functions of m0 numerically (Eqs. (4) and (5), respectively).
The evaluation of these functions is then done by interpo-
lation in a one-dimensional lookup table. This allows a
very fast evaluation of the cost function. The ML estima-
tion for averaged data is somewhat more involved. Details
are given in Appendix A.

Non-linear optimization is required for all estimators
except LR. We used a built-in function of Matlab� (The
Mathworks Inc., Natick, MA) that implements the Nel-
der-Mead direct-search simplex method [23]. This algo-
rithm is efficient in the presence of a low dimensional
parameter space. Thus it is well suited for our problem,
where we only have to minimize with respect to two param-
eters, q and D.

At very low SNR (q/r < 3), the algorithm occasionally
converges towards very large or small values of D, but
the point to which it converges proves not to be a mini-
mum, but rather a point where the cost function is flat with
respect to D. This produces outliers that may severely con-
taminate the mean and variance of the Monte Carlo (MC)
sample. This problem has to be solved in order to evaluate
the estimators at low SNR, which is our main interest. In
order to ensure that the point to which the algorithm con-
verges really is a minimum, we calculate the Hessian matrix
(i.e. the matrix of second derivatives), and accept the point
only when the Hessian proves to be positive definite, i.e.
when both eigenvalues are positive (above a cut-off value
of 10�5). Details about the calculation of the Hessian
matrix are given in Appendix B.

If the search algorithm fails (either because it does not
converge or because the Hessian is not positive definite)
we alter the starting values and repeat the search. If a min-
imum cannot be found in fifty tries we reject the dataset.

Having run the MC simulations we can estimate the
PDF for each estimator. The properties of the approximate
PDF can be expressed by its moments. If the distribution is
normal, all information is contained in the first two
moments (mean an variance), but in general there can also
be unique information in higher order moments. However,
we shall only consider the sample mean and sample
variance.

If the number of rejected datasets is very large we cannot
use the sample mean and sample variance to determine the
true mean and variance of the estimator. The bias and var-
iance of the MC sample will be too low since rejected data-
sets usually correspond to extreme values of the fitting
parameters q and D. At the rather low SNR of q/r = 2
on the order of 1% of the datasets were rejected. With
q/r P 4 no datasets were rejected.

4. Results and discussion

We have run MC simulations for non-averaged
(NAV = 1) and averaged (NAV = 4) data. In the former case
the MC sample size was 10000, in the latter it was 5000. We
calculate sample mean and SD for the estimators listed in
Table 1. With the term SNR we refer to the ratio q/r,
i.e. the normalized true magnitude in the absence of diffu-
sion weighting.

In Fig. 6, the parameters are D = 1 · 10�3 mm2/s,
b = [0, 100,200, . . . , 1000] s/mm2, the SNR q/r is in the
range 2–10 and NAV = 1. The HS estimator performs best
in terms of bias, particularly at very low SNR. The MP
estimator performs better than the other bias-correcting
estimators in terms of SD. The performance of the PI esti-
mator is poor in terms of bias as well as SD. The LR esti-
mator performs better than UC in terms of bias. This may
seem surprising, but it is readily understood from the fol-
lowing argument: If the random variable m has the expec-
tation value E[m] = l then the expectation value of the
random variable ln(m) will be lower than ln(l). The noise,
on the other hand, introduces a positive bias for the signal
intensities. Hence the two effects cancel partially. The SD
of the uncorrected estimators (LR and UC) is very low
compared to the bias-correcting estimators at SNR lower
than 4. This is not surprising since the bias of these estima-
tors makes the estimates assemble in a narrow region close
to zero as the SNR approaches zero. At SNR above 5 the
SD of the LR estimator is higher, as expected.



a

b

Fig. 6. Sample mean (a) and standard deviation (SD) (b) versus SNR with
true diffusion coefficient D = 1 · 10�3 mm2/s and diffusion weighting
factors b = [0,100,200, . . . , 1000] s/mm2. The abbreviations in the legend
are given in Table 1.

a

b

Fig. 7. Data plotted as a function of the true diffusion coefficient with a
fixed SNR value of q/r = 4. The figure shows the ratio of the sample mean
to the true value of the diffusion coefficient (a) and the ratio of the sample
standard deviation (SD) to the true value of the diffusion coefficient (i.e.
the relative uncertainty) (b). The diffusion weighting factors are
b = [0,100,200, . . . , 1000] s/mm2. The abbreviations in the legend are
given in Table 1.
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In Fig. 7, we show data plotted as a function of the true
diffusion coefficient with a fixed SNR of q/r = 4. We plot
the ratio of the sample mean to the true value of the
diffusion coefficient and the ratio of the sample SD to the
true value of the diffusion coefficient (i.e. the relative
uncertainty). The diffusion weighting factors are b =
[0,100,200, . . . , 1000] s/mm2. The D-range (0.2 � 2 · 10�3

mm2/s) covers the values that are typically encountered
in brain tissue. The HS estimator has the best overall per-
formance in terms of bias, whereas MP performs somewhat
better in terms of SD. The PI estimator performs poorly
over the entire range. The LR estimator has a lower bias
than UC for D < 1.7 · 10�3 mm2/s. This is due to the
aforementioned partial noise bias compensation intro-
duced by the logarithm operation. Furthermore we observe
that the relative uncertainties (SD/D) of the MN, MD, MP,
ML and HS estimators are minimal in the range
D = 0.7 · 10�3–1.4 · 10�3 mm2/s. This expresses the fact
that the estimators have a D-range in which the perfor-
mance is optimal. The sampling scheme (specific distribu-
tion of the diffusion weighting factors) could be
optimized rigorously by minimizing the Cramér-Rao lower
bound [11,24]. However, this is beyond the scope of the
present paper, where our main intention is to compare
the performance of different estimators.

Fig. 8 shows the effect of reducing the number of
diffusion weighting factors. We now have b = [0,200,400,
600,800,1000] s/mm2. The diffusion coefficient is
D = 1 · 10�3 mm2/s, like in Fig. 6, but the lowest SNR
value is now 3 rather than 2. The reason is that the results
get unreliable at low SNR due to a larger number of
rejected datasets. In this figure the MP estimator is supe-
rior, both in terms of bias and SD.

We have run simulations (data not shown) in order to
investigate the effect of altering the norm from L2 to L1

(see Eq. (13)) for the estimators UC, MN, MD and MP.
All estimators had a larger SD when we used the L1 norm.



a

b

Fig. 8. Effect of altering the number of diffusion weighting factors. The
figure shows the sample mean (a) and standard deviation (SD) (b) versus
SNR with true diffusion coefficient D = 1 · 10�3 mm2/s and diffusion
weighting factors b = [0,200,400,600,800,1000] s/mm2. The abbreviations
in the legend are given in Table 1.

a

b

Fig. 9. Averaged data with NAV = 4. The figure shows sample mean (a)
and standard deviation (SD) (b) versus SNR with true diffusion coefficient
D = 1 · 10�3 mm2/s and diffusion weighting factors b = [0,100,200, . . . ,
1000] s/mm2. Note that direct PI estimation is not possible for averaged
data. The abbreviations in the legend are given in Table 1.
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The bias was reduced for UC and MP and increased for
MN and MD. Overall L2 seems to be the better choice.

We have also compared the results (data not shown)
obtained by minimizing an unweighted versus a weighted
sum of squares (Eqs. (13) and (14), respectively). The effect
on the UC estimator was marginal. For MN, MD and MP
there was a slight reduction in SD. For MN and MD the
bias was reduced and for MP it was increased. As discussed
in Section 2, weighting requires a priori knowledge of the
variance. We do not have this information, see Eq. (7),
but it might be possible to solve the problem by an iterative
scheme. However, the benefits of weighting seem to be too
small to justify such a time-consuming approach.

In Fig. 9, we show results for averaged data with
NAV = 4. The diffusion coefficient is D = 1 · 10�3 mm2/s,
the diffusion weighting factors are b = [0,100,200,. . . ,
1000] s/mm2 and the SNR q/r is in the range 2–10. The
uncorrected estimators, LR an UC, are seen to perform
poorly in terms of bias, even at high SNR. Among the
bias-correcting estimators, MD performs best in terms of
bias, whereas MN, MD, MP and ML are quite equal in
terms of SD. The simple HS estimator has very large bias,
in particular at low SNR.

As explained in Section 2, it is possible to apply a sim-
plified two-step ML procedure for averaged data, where
we correct the bias at each one of the Nb data points prior
to least squares fitting. By keeping the NAV individual data-
sets we can also employ the PI method or the scheme pro-
posed by Gudbjartsson and Patz [5] (Eq. (20)). We have
run simulations (data not shown) to compare the perfor-
mance of these methods to MN, MD, MP and full-ML
estimation. The simplified versions proved to be signifi-
cantly inferior in terms of bias and in terms of SD.

Figs. 10 and 11 display the results for averaged
data plotted as a function of the true diffusion coefficient
with a fixed SNR value of q/r = 4. The diffusion weighting
factors are b = [0, 100,200, . . . , 1000] s/mm2 and b =



a

b

Fig. 10. Averaged data with NAV = 4 plotted as a function of the true
diffusion coefficient with a fixed SNR value of q/r = 4. The figure shows
the ratio of the sample mean to the true value of the diffusion coefficient
(a) and the ratio of the sample standard deviation (SD) to the true value of
the diffusion coefficient (i.e. the relative uncertainty) (b). The diffusion
weighting factors are b = [0,100,200, . . . , 1000] s/mm2. The abbreviations
in the legend are given in Table 1.

a

b

Fig. 11. Effect of altering the total range of the diffusion weighting factors.
The figure shows averaged data with NAV = 4 plotted as a function of the
true diffusion coefficient. The parameters are the same as in Fig. 10, but
the diffusion weighting factors are b = [0,200,400, . . . , 2000] s/mm2. The
abbreviations in the legend are given in Table 1.
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[0,100,200, . . . , 1000] s/mm2, respectively. By using a maxi-
mum b-value of 2000 s/mm2 we obtain a reduction in the
overall SD (in particular for the slowest diffusion compo-
nents), at the expense of a slight increase in bias. The rela-
tive uncertainty (SD/D) is at a minimum for
D � 1.2 · 10�3 mm2/s in Fig. 10 and D � 0.6 · 10�3

mm2/s in Fig. 11. This expresses the aforementioned fact
(see Fig. 7) that the estimators have a D-range in which
the performance is optimal. In DTI we need to resolve slow
components, so choosing the range b = [0,200,400, . . .,
2000] s/mm2 seems preferable for this purpose.

In Table 2, we show numerical results for non-averaged
and averaged data that were obtained with SNR q/r = 4
and true diffusion coefficient D = 1 · 10�3 mm2/s. For
non-averaged data the optimal choice of estimator is MP
or HS, whereas LR, UC and PI should not be used. For
averaged data MD or ML seems preferable, whereas LR,
UC and HS should be avoided.

In the simulations, we assumed the noise level, r, to be
known. In a real diffusion imaging experiment r is esti-
mated from regions of interest that contain only noise pix-
els [5,13,25]. Our experience shows that this can be done
with a precision better than 5%. We have tested the sensi-
tivity of the algorithms with respect to the r estimate. With
an error of 5% and parameters D = 1 · 10�3 mm2/s,
b = [0, 100,200, . . . , 1000] s/mm2 and q/r = 4, we find the
following effect for non-averaged data: MN, 3.0%; MD,
2.4%; MP, 1.2%; PI, 3.0%; ML, 3.1% and HS, 1.8%. Hence
MP and HS are the most robust algorithms with respect to
errors in the noise estimate. For averaged data with
NAV = 4 we find the following effect: MN, 2.5%; MD,
2.4%; MP, 2.1%; ML, 2.6% and HS, 1.6%.

Our simulations indicate that the MD and MP estimators
perform better than ML and MN in terms of bias. This
may seem surprising. The ML estimator is known to be



Table 2
Estimates and standard deviations (SD) obtained at signal-to-noise ratio q/r = 4

Estimator Non-averaged Averaged

Dense sampling Sparse sampling Narrow range Wide range

Estimate SD Estimate SD Estimate SD Estimate SD

LR 0.92 0.43 0.92 0.54 0.83 0.18 0.58 0.10
UC 0.84 0.35 0.85 0.45 0.83 0.17 0.66 0.11
MN 1.07 0.53 1.15 0.91 1.01 0.22 1.03 0.24
MD 1.03 0.49 1.10 0.83 1.00 0.22 1.01 0.23
MP 0.97 0.43 1.01 0.70 0.98 0.21 0.98 0.23
PI 1.20 1.13 1.27 1.21 n/a n/a n/a n/a
ML 1.05 0.49 1.11 0.77 1.01 0.22 1.02 0.23
HS 1.00 0.45 1.05 0.73 0.96 0.20 0.91 0.19

The results are given in units of 10�3 mm2/s. The true diffusion coefficient is D = 1 · 10�3 mm2/s. For non-averaged data, the diffusion weighting factors
were b = [0,100,200, . . . , 1000] s/mm2 (dense sampling) and b = [0,200 ,400, . . . , 1000] s/mm2 (sparse sampling). For averaged data, the diffusion weighting
factors were b = [0,100,200, . . . , 1000] s/mm2 (narrow range) and b = [0,200,400, . . . , 2000] s/mm2 (wide range). For non-averaged data, the optimal choice
of estimator is MP or HS. LR, UC and PI should not be used. For averaged data, MD or ML seems to be a good choice, whereas LR, UC and HS should
be avoided.
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asymptotically unbiased, i.e. unbiased as the total number of
measurements, NAV · Nb, approaches infinity. In this limit
ML can also be shown to have the lowest SD (the Cramér-
Rao lower bound). The MN estimator is also asymptotically
unbiased. This is readily understood for averaged data in the
limit NAV fi1, where the averaged intensity at each b-value
approaches mMN (Eq. (3)). Furthermore, we also have
mMD fi mMN (Eq. (4)) and mMP fi mMN (Eq. (5)) in this
limit. Hence the MD and MP estimators are also asymptot-
ically unbiased for NAV fi1.

For non-averaged data, we can give a heuristic argument
to substantiate the fact that the MN estimator must be
asymptotically unbiased. If we consider averaged data where
NAV as well as Nb are large, then (as argued above) the MN
estimator is unbiased. If we distribute the Nb · NAVmeasure-
ments evenly along the b-axis, the estimated diffusion coeffi-
cient should not be altered too much. Hence the MN
estimator must be unbiased for non-averaged data as well.
From the same line of reasoning the MD and MP estimators
must now be asymptotically biased.

In order to verify the heuristic argument we ran a simu-
lation with very dense sampling, b = [0,1,2, . . . , 1000] s/
mm2, with SNR q/r = 3 and D = 1 · 10�3 mm2/s. The
results were (mean/SD in units 10�3 mm2/s) MN, 1.004/
0.072; ML, 1.004/0.072; MD, 0.94/0.066 and MP, 0.84/
0.056. Indeed we confirm that MN and ML are asymptot-
ically unbiased, whereas MD and MP are asymptotically
biased. MD is a more ‘‘conservative’’ choice than MP in
the sense that the asymptotic bias is lower. The sample size
required for MN and ML to be unbiased is too large to be
encountered in clinical situations. Our simulations are in
favor of MD or MP for limited samples.

The question of the optimal estimation of the diffusion
tensor is interesting and has recently been discussed by
Koay et al. [26]. An alternative procedure for estimating
the diffusion tensor might be to maximize the joint likeli-
hood function for the entire tensor, L(h;y), with h = [q/r,
D11, D22, D33, D12, D13, D23], and a measurement vector
y that includes the observed magnitudes for all directions
and all Nb values of the diffusion weighting factor. We have
concluded earlier that one-step ML estimation of (q,D)
yielded better results than the two-step procedure by which
we used ML principles to correct the bias in the measure-
ments at each value of the diffusion-weighting factor prior
to least squares fitting. This suggests that simultaneous ML
estimation of the entire diffusion tensor might be the opti-
mal procedure. However, this requires optimization in a
seven-dimensional parameter space, so the computational
cost will be formidable.

5. Conclusion

We have discussed various estimators of the diffusion
coefficient in the presence of noise for non-averaged as well
as averaged data. We found that the MP and MD estima-
tors work well when the number of measurements is lim-
ited, which is the case of interest for clinical applications.
The simple HS estimator works well for non-averaged
data, but it is not adequate for averaged data. The L2 norm
works better than L1. There is not much to gain by mini-
mizing a weighted, relative to an unweighted, sum of
squares. ML estimation is possible for averaged data, but
does not perform better than MD with the number of mea-
surements typical for clinical situations. Proper estimation
of the diffusion coefficient allows for high resolution DTI.
Smaller voxels reduce the ambiguities associated with
crossing fibers in tractography. The results given in this
paper apply equally well to any situation where the task
is to extract data from a noisy magnitude dataset where
the true magnitude is mono-exponential. Other examples
are measurements of the transverse relaxation rate, R2

and effective transverse relaxation rate, R�2.

Appendix A

In this appendix we provide details about ML estima-
tion for averaged data. We need to calculate the probability
pmave
ðm; m0Þ of observing the averaged magnitude m given
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the true magnitude m0 numerically (Eq. (10)). Then, assum-
ing independent measurements, the logarithm of the likeli-
hood of the model parameters (D,q) given the averaged
measurement vector m is defined by Eq. (21) as

ln½LððD; qÞ; mÞ� /
XNb

k¼1

ln½pmave
ðmk; q expð�DbkÞÞ� ðA:1Þ

We tabulate ln½pmave
ðm; m0Þ� in the range m0/r = [0,20] and

m/r = [0,30] and use a simple bilinear scheme for interpo-
lation. If m0/r > 20, we use the Gaussian approximation

pmave
ðm; m0Þ � NðmMN; r

2
m=NAVÞ ðA:2Þ

where mMN and rm are given in Eqs. (3) and (7), respec-
tively. The procedure for evaluating Eq. (A.1) is illustrated
a

b

Fig. 12. Calculation of the logarithm of the likelihood for averaged
magnitude data. (a) The circles show a possible outcome of a measurement
of the averaged signal magnitude, m, in the presence of noise. The number
of averages, NAV, is four and the noise level, r, equals unity. The crosses
show values of the true magnitude, m0, that correspond to a specific
realization of the model parameters (which we want to estimate). In this
example D = 1 · 10�3 mm2/s and q/r = 3. (b) A contour plot of the
logarithm of the likelihood as a function of the normalized true and
measured magnitudes (with NAV = 4) calculated numerically using Eq.
(11). The dots correspond to the data points in (a).
in Fig. 12. The ML estimates of (D,q) for a given realiza-
tion of m are the values that maximize Eq. (A.1).

Appendix B

In this appendix, we describe the algorithm that we used
for calculating the Hessian matrix.

The model parameters must be scaled to the same order
of magnitude. Measuring q in units of r and D in units of
10�3 mm2/s, we have both parameters on the order of
unity. In order to calculate the second derivatives that con-
stitute the Hessian we use low order finite difference expres-
sions. This amounts to evaluating the cost function on a 3
by 3 grid [19]. We use a step size of 0.003 in each direction.
In most cases this provides the necessary precision for clas-
sifying the point to which the algorithm converged. How-
ever, there are some cases where the larger eigenvalue
exceeds the smaller one by several orders of magnitude.
Then the algorithm with fixed step length does not yield
sufficient precision. In order to cover all cases we therefore
use an iterative scheme to calculate the Hessian. The steps
are as follows

• First iteration. Use a step length of 0.003 in each direc-
tion. Calculate the first approximation to the Hessian.
Calculate eigenvalues and eigenvectors.

• Iteration n. Use the eigenvectors found in iteration n � 1
to construct a rotation matrix. Use this rotation matrix
to align approximately the finite difference grid with the
main axes of the true Hessian. Adapt the step lengths by
choosing them to be proportional to the inverse square
root of the eigenvalues found in iteration n � 1.
Fig. 13. Principle drawing of the iterative algorithm for calculating the
Hessian. We start with a 3 by 3 finite difference grid with equal step lengths
in the q and D directions (illustrated by the square drawn with dashed
lines). We then rotate the grid and adapt the step lengths (illustrated by the
rectangle drawn with full lines).
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• Repeat until the smaller eigenvalue has converged with
the desired precision.

The procedure is illustrated in Fig. 13.
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